
home automation solution. You also
flash the firmware of the bulb with Tas-
mota, a free and open source firmware
for ESP8266-based Wi-Fi devices. And
finally, you will have to configure an
MQTT broker so that HASS and the
bulb can talk to each other, and you can
control the bulb using a shiny UI. The
entire process takes about 20 minutes
if you know what you are doing, and a
couple hours if you’re a beginner.

The flashing procedure is not of-
ficially supported, and will likely void
the hardware warranty of your bulb.
Note that, we have flashed 6 bulbs, and
nothing has gone wrong, but your mile-
age may vary. You have been warned!
Additionally, we won’t be discussing
best practices for setting up HASS.
That’s an entire article in its own right.
You don’t need HASS, you can control
the bulb from Tasmota’s webUI, or just

Make a personal, and private home automation
system, with full control over your smart bulb’s
hardware. No proprietary black box spying here!

Aaruni Kaushik | feedback@digit.in functionality, all big companies have to
transfer your data to their computers
for operations. What if there was a way
to get the best of both worlds? If that got
your attention, continue reading, and
by the end of this article, you’ll have
your own private smart infrastructure!

Quick Overview
The process, in broad strokes, is simple.
Your goal is to get automation function-
ality from a smart bulb, with all of your
data never leaving the LAN. To do this,
you need to set up your own command
and control server with Home-Assis-
tant (HASS), a free and open source

Smart light
automation

A
trademark feature of
all futuristic high tech
homes is smart
appliances, and
central control hubs.

As examples take the lights that change
colour depending on the time, weather,
or when you come home or leave. Also,
apps on your PC that control the
automated system and your smart-
phone that can run a manual overrides
whenever required! However, such
convenience often comes at the cost of
your own privacy. To get advertised

tech

diy

18 | Digit | May 2020 | www.digit.in

Tasmota Templates
Use these copy paste templates on your device,
for which you will have to install Tasmota first.
https://dgit.in/may20-01

Tasmota 8.2 Elliot
Open source firmware for ESP8266 devices,
with web based controls and more.
https://dgit.in/may20-02

MQTT messages, but HASS provides a
nice interface of control.

Requirements
For flashing, you will need an up to
date Debian-based Linux computer
with Wi-Fi (For example, an old laptop,
or a Raspberry Pi, or even a live disk. A
VM will probably not work.)
•	 For the HASS server, an up to date

Linux computer with Wi-Fi (An old
laptop, Raspberry Pi, or even a VM.
Note that a live environment is not
optimal as you will have to install
the server at every reboot.)

•	 A Wi-Fi device (A phone, a tablet, or
another laptop connected to Wi-Fi)

•	 Docker / alternate method to install
HASS (Optional, only if you want
app UI and automations)

•	 Tuya-convert
•	 A compatible Wi-Fi bulb
•	 A few hours on a good weekend!
•	 Home Assistant: Home-Assistant

is a free and open source home
automation and control solution.
There are many ways and compat-
ible devices to install it. Person-
ally, we ran it in a python virtual
environment on our home server.
But for this guide, we recommend
the docker method, as this is just
a single command and requires
minimal configuration.

Tuya and Tuya-convert
Tuya is a China-based manufacturer of
smart electronics. As long as you have
a Tuya device, you can flash custom
firmware for the device in an OTA style
update. No soldering required! Some
Tuya devices available on the market
include the Wipro Garnet line of smart
lights, and the Amazon Solimo brand
of smart LEDs.

WARNING: Remember to check your
exact model number against the device list
on Tasmota wiki before purchase. From
personal experience, we can only confirm that
Wipro Garnet NS9001 works.

The first time a Tuya device con-
nects to the internet, it calls home to
fetch updates. We use a program called
tuya-convert which pretends to be the
update server for the bulb, and installs

a firmware of our choice into the device.
We need a Debian-based computer
because the program runs apt-get in
the background. This can be modi-
fied for use with other distributions of
Linux, but this is not covered in this
article. While this article is written with
a Debian base in mind, it can easily be
modified for other Linux distributions.

Tasmota
ESP8266 is a Wi-Fi enabled microcon-
troller commonly used in IoT devices.
Tasmota is a free and open source
custom firmware for ESP8266 based
devices. It works for a wide range of

devices including bulbs, switches, and
kettles. You can configure the firmware
to work for your device by specifying
a device template, so it knows what
device it is installed on. With Tasmota
installed, you get features such as full
brightness and colour control, timed
executions, etc, with complete control
over your device. No proprietary spy-
ing blackboxes. Sadly, you lose the abil-
ity to voice control and app control the
bulb with just Tasmota, as it provides
only a web interface and an MQTT
interface, but the functionality can be
added back with Home-Assistant.

Updates
You should first update your computer

sudo apt-get update &&
sudo apt-get upgrade

If you are running a live environment,
you may need to enable universe re-
pository before running updates.

sudo add-apt-repository
universe

MQTT
Next, install an MQTT broker so that
the smart bulb and HASS can talk to
each other. (Do this on the ‘server’ PC.)

sudo apt-get install mos-
quitto mosquitto-clients

Now, we need to open the MQTT
port on your computer firewall.

sudo ufw allow 1883; sudo
ufw enable

Home Assistant
We need to remove any conflicting
packages on your system (server PC).

sudo apt-get remove docker
docker-engine docker.io con-
tainerd runc

Then, we will need to install the
packages required for docker

sudo apt-get install -y
software-properties-common
apparmor-utils apt-transport-
https avahi-daemon ca-certif-
icates curl dbus jq network-
manager socat ufw

Modem manager service needs to be
disabled since it can cause conflicts

sudo systemctl disable
ModemManager.service

Install Docker Community Edition-
curl -fsSL get.docker.com | sh

The App control and Voice control functionality is provided by Home Assistant,
everything else by Tasmota.

tech

diy

www.digit.in | May 2020 | Digit | 19

Wipro Garnet
If light bulbs are not your thing, check out
these really cool dimmable LED tuble lights
from Wipro. https://dgit.in/may20-03

Amazon Solimo
These Amazon Solimo light bulbs also use
the ESP8366 board, and this DIY works on
them too. https://dgit.in/may20-04

Check if docker was installed prop-
erly by running the hello-world image.
sudo docker run hello-world

If this produces errors, you must
debug them before you continue. Next,
install home assistant in docker
curl -sL “https://raw.githu-
busercontent.com/home-assis-
tant/hassio-installer/master/
hassio_install.sh” | sudo
bash -s

Now visit your home assistant
installation by typing http://local-
host:8123 into your browser. Follow the
on screen instructions.

After this, you will need to enable
the MQTT integration.

Head to settings -> inte-
grations.

On the bottom right corner of the
screen, you should see a button to
add integrations. Click on that. On the
resulting dialogue box, choose MQTT.

Enter the following settings -
Broker: localhost, Port:

1833, Enable Discovery: True

Tuya-convert
In this step, you will flash Tasmota
onto your smart bulb. This step is cru-
cial in stopping your data from leaking
all over the internet via the proprietary
firmware the bulb already has.

This step needs to be followed on
the “flashing” computer. The one with
hardware access to its Wi-Fi chip.

First you need to clone the reposi-
tory from github.

	 sudo apt-get insall
-y git

	 git clone https://
github.com/ct-Open-Source/
Tuya-convert

Then you should run the “pre
requisites” script. (Note, if you have
not already, you should enable the
universe repository and update your
computer. Otherwise the next step
produces errors.)

cd Tuya-convert; ./in-
stall_prereq.sh

Make sure the above step completes
without errors. Next, within the Tuya-
convert directory execute

cat config.txt

You should see a line similar to
WLAN=wlan0
Make sure it matches your Wi-Fi

chip. To check the name of your Wi-Fi
chip, execute

ifconfig | grep wl
The first word in the output is the

name of your Wi-Fi chip.
wlp2s0: flags=4099 mtu

1500
Edit config.txt to reflect the right

WLAN name. And then finally, you
can start the flashing process!

./start_flash.sh
The following steps are accurate at

the time of writing. It is possible that
something changes in future updates
to Tuya-convert. When in doubt, fol-
low the on screen prompt. Follow the
on screen guide, inputting consent
as required, until you reach the point
where your laptop is broadcasting
vtrust-flash (At this point the process
pauses for you to press enter). Connect
a Wi-Fi device to vtrust-flash. All it
needs to do now is connect to Wi-Fi
and go to the network login page. Plug
your smart bulb into a socket and
switch it on. It should immediately
start blinking fast. If, for some reason,
it isn’t blinking fast, you can power
cycle it twice to set it to the required
mode. To power cycle it, switch it ON-
OFF-ON-OFF-ON. Wait a moment
for the bulb to enter flashing mode.
With your bulb in flashing mode, and
a device connected to vtrust-flash , hit
enter on the console.

The program will now connect to
your smart bulb, make a backup of its
original firmware, and then prompt
you to choose between installing
Tasmota and another firmware. Hit
the number choice for Tasmota. The
program will upload the Tasmota
firmware to your bulb and reboot it.
Close the program when it asks you
to flash more devices. Now, wait for
the bulb to restart, and then con-
nect to its Wi-Fi. It should be named
‘something Tasmota-1111’. It is possi-
ble to do this and the next configura-
tion steps with your phone browser,
but its recommended you do this
from your computer.

Tasmota Configuration
The first time you connect to your
Tasmota device via its Wi-Fi AP, you
will need to enter the Wi-Fi name and
password of your router. It will then
reboot and connect to your Wi-Fi.
Once this is done, you will need your
bulb’s IP address to continue. This can
be looked up from your router’s status
page, or using the “LAN neighbours”
features of the “Wi-Fi Analyzer”
app on Android. Enter your bulb’s
IP address into your browser. You
will be greeted by Tasmota’s webUI
menu. Head to Configuration ->
Configure MQTT , and enter your
MQTT broker’s IP. If you’ve been
following this article, that’s the same
IP address as your “server” computer.
Now, hit “Save”. Your bulb should
reboot again. At this point, your bulb
can talk to your MQTT broker. Your
MQTT broker is already talking to
your install of HASS. Now, all that
remains is to tell Tasmota what hard-
ware its running on.

Tasmota Template
Configuration
You now need to configure the template
of your firmware to match your device.
This is just mapping the software
functionality to the hardware ports of
your device. Your first try should be to
simply copy the template of from your
light’s page at https://templates.blakad-
der.com/bulb.html.

Note that in our experiments Wipro
Garnet did *NOT* follow the template
given on blakadder.

If the template from the website
doesn’t give you the expected function-
ality , and your light is Wipro Garnet
NS9001 810lm, you could try the fol-
lowing template :

{“NAME”:”WiproSmartBulb”
,”GPIO”:[0,0,0,0,38,37,0,0,
40,39,41,0,0],”FLAG”:0,”BA
SE”:18}

If the above steps fail for you, you
will have to get your hands dirty and
investigate. Its not hard, it just requires
some extra time.

Step 1: Go into console, and type
the command Color 255,0,0,0,0

tech

diy

20 | Digit | May 2020 | www.digit.in

iOS Shortcuts Guide
iOS has powerful home automation tools,
and this in-depth guide should give you a
headstart. https://dgit.in/may20-05

IFTTT applets
Here are a bunch of IFTTT applets to use
with yoursmartlights, including GPS and
time based ones. https://dgit.in/may20-06

This sets the “red color” (PWM1)
in the software to full brightness,
and all other colours in software
to 0. Now, all we need to do is map
PWM1 to the different GPIO ports
in the template configuration one by
one. The bulb will restart after each
template change.

Step 2: Go into template and
map PWM1(37) to GPIO4. Make
all the other maps go to 0. Click
on save. Note what colour the bulb
changes to.

Step 3: Map PWM1(37) to GPIO5.
Make all other maps go to 0. Click
on save. Note what colour the bulb
changes to.

Step 4: Map PWM1(37) to
GPIO12. Make all other maps go to 0.
Click on save. Note what colour the
bulb changes to.

Step 5: Map PWM1(37) to GPIO13.
Make all other maps go to 0. Click
on save. Note what colour the bulb
changes to.

Step 6: Map PWM1(37) to
GPIO14. Make all other maps go to 0.
Click on save. Note what colour the
bulb changes to.

At the end of Step 6 , you should
have a map similar to this

GPIO4 Green

GPIO5 Red

GPIO12 Yellow

GPIO13 Blue

GPIO14 White

If you don’t get all the colour chan-
nels you expect from the above GPIO
ports, you can try setting random
GPIO ports to PWM1 (37), till you find
the date for all channels. RGB lights
will only have 3 channels, RGBW will
have 4 channels, and RGBWY will
have 5 channels which need mapping.

Once you have all your data, all
you need to do is go into the template
configuration and map the right col-
our channels to the right GPIO pins.
You will need to do this according to
the following table-

Color PWM Pin Code Number

Red PWM1 37

Green PWM2 38

Blue PWM3 39

Yellow PWM4 40

White PWM5 41

So, if your GPIO to Color maps were
as in the example above, you would get
a mapping as follows:

GPIO PWM Code
Number

GPIO0 None 0

GPIO1 None 0

GPIO2 None 0

GPIO3 None 0

GPIO4 PWM2 38

GPIO5 PWM1 37

GPIO9 None 0

GPIO10 None 0

GPIO12 PWM4 40

GPIO13 PWM3 39

GPIO14 PWM5 41

GPIO15 None 0

GPIO16 None 0

ADC0 None 0

Fade and Speed
This is an optional step that allows
you set fade and speed options on
your bulb. This is optional, but it is
highly recommended, as lights with
colours that just snap into place can
get a little jarring.

Open up the Tasmota console. Enter
in the following two commands-

Fade ON
Speed 20
This will make the bulb fade

between settings. You can set speed to
any integer between 1 and 20, where 1
is the shortest time between settings,
and 20 is the longest.

Sleep
If you notice your light is flickering
when turned on, you can try setting
Sleep to a less aggressive setting. Your
light will consume slightly more power
when turned off, but the trade off in
terms of quality of lighting is worth it.

Sleep 0
Once you have HASS properly set

up, you can automate your light to set
Sleep to 0 when its on for the right
behaviour, and set Sleep to 200 for
maximum power savings whenever it
turns off.

SetOption19
Normally, you would have to manu-

ally configure your light and HASS to
work together, but Tasmota provides a
handy option to play nice with HASS
when MQTT autodiscovery is enabled.
Head to your Tasmota web UI, and
click on console. Type in SetOption19
ON. Now, when you restart your setup,
everything will just magically work
together! If everything has gone accord-
ing to keikaku, you will end up with a
nice bulb interface in your HASS UI.

Bonus : Automate Sleep
If you’re experiencing weird flicker-
ing, you can automate changing the
sleep setting based on the state of the
light, to get maximum saving when
the light is off, and maximum perfor-
mance when the light is on. In your
HASS interface, head to Configura-
tion -> Automations. Click on
the new button on the bottom right
corner. On the resulting dialogue box,
click “skip”. Name your automation
something informative like “Pow-
erOnSleep0”. As your trigger, select
“State”. In the entity, select your light.
Enter From as “off”, and To as “on”.
As your action, select “Call Service”.
Select your service to be mqtt.publish.
In the payload, enter the following :

topic: Tasmota/cmnd/SLEEP
payload: 0
Hit save. Add another automa-

tion, with the opposite trigger, and
payload: 200. Note : The topic will
change based on your Tasmota MQTT
settings. Tasmota/cmnd/{command
name} is the default topic.

tech

diy

www.digit.in | May 2020 | Digit | 21

Alexa routines
An outline of various approaches that can
be used to make Alexa work with your
smart lights. https://dgit.in/may20-07

Best smartlights
Whether it is for family rooms, value or
security, here are the best smartlights for
every purpose. https://dgit.in/may20-08

