
Master’s Thesis

Investigating Resilience of Levelled Fully
Homomorphic Encryption System
Against Data Scientific Attacks

Untersuchung der Resistenz eines Abgestuften Homomorphen Verschlüsselungssystems
Gegen Datenwissenschaftliche Angriffe

Aaruni Kaushik

February 15, 2023

supervised by

Prof. Dr. Claus Fieker

Rheinland-Pfälzische Technische Universität
Kaiserslautern-Landau

Statutory Declaration

I hereby declare that I have developed and written this thesis completely by myself, and
have not used sources or means without declaration in the text. Any thoughts from others
are clearly marked.

Aaruni Kaushik Location, Date

i

Abstract
In this thesis we look at the Levelled Fully Homomorphic Encryption scheme
described by Craig Gentry, Amit Sahai, and Brent Waters in [GSW13]. We
describe an explicit implementation of the scheme in python, and provide a
method to choose parameters for encryption. We also explain our attempt at
attacking the system using data science tools instead of classical cryptanalysis.

ii

Acknowledgements
I would like to thank Dr Claus Fieker for agreeing to guide my reading course and supervise
my thesis, Ms Yvonne Weber for sharing her own thesis for reference, and all of my friends
and family who have supported my work.

iii

Contents
Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Fully Homomorphic Encryption (FHE) . 1
1.2 Brief History . 1
1.3 Organization . 2
1.4 Related Works . 2

2 Notation 3

3 Prerequisites 4
3.1 Cryptographic Background . 4
3.2 Number Theoretic Background . 7
3.3 Helpful Functions . 7

4 GSW LFHE 10
4.1 GSW Encryption Scheme . 10
4.2 Correctness of Decryption . 11
4.3 Choice of Parameters . 13
4.4 Reformulated GSW13 . 14
4.5 Examples . 16

5 Cryptanalysis 17
5.1 Basic Idea . 17
5.2 Data Science Facts About Our Data . 17
5.3 Our Results . 18

5.3.1 Accuracy . 18
5.3.2 Time Complexity . 18

5.4 Concluding Remarks . 19

6 Further Work 19

7 Appendix 21
7.1 Data Scientific Background . 21

7.1.1 Data Mining Dictionary . 21
7.1.2 Topological Data Analysis . 22
7.1.3 The Pipeline . 23

7.2 Implementation . 23
7.3 Statistical Analysis Code . 27

References 33

iv

1 Introduction

1.1 Fully Homomorphic Encryption (FHE)

Homomorphic encryption is a form of encryption that permits computations on encrypted
data without having to first decrypt. The decryption of this computation is identical to the
same computation performed on unencrypted data. This type of encryption can be used
for privacy-perserving cloud storage and computation. It allows data to be encrypted and
outsourced to commercial cloud environments for processing, while never being decrypted.
This ensures that users can still avail all the benefits of cloud computing, while also guar-
anteeing privacy of data even against the offsite service provider.

Some simple ways in which homomorphic cryptography may be applied are :

• Navigation
An online map provider can run the “difference” operation homomorphically on the
encrypted copies of your location and destination without ever finding out where you
are and where you are going.

• Healthcare
A medical institute could safely offload data management to a homomorphically en-
crypted cloud provider, and then edit patient records directly on the cloud without
ever revealing what changes were made to whom.

• e-Voting
A ballot system can be designed where each vote is a homomorphic addition, and it
can not be determined to which candidate you have given your vote, while keeping the
final vote count accurate.

1.2 Brief History

The problem of constructing a fully homomorphic cryptographic scheme was first proposed
by Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos in 1978 [RAD78], but had
remained merely an academic question for over 30 years as no one could come up with a
practical design. Craig Gentry, using lattice-based cryptography, described the first plausible
construction for a fully homomorphic encryption scheme in 2009 [Gen09]. This came to be
known as First Generation FHE. The basic idea of this scheme is to hide the message inside a
small error, called noise, which the decryption process is resilient against. The level of noise
compounds with every homomorphic operation, and beyond a point grows to a level where
decryption would be impossible. To combat this, an expensive operation called bootstrapping
must be performed, which reduces noise.
Building on improvements and relying on the hardness of the (Ring) Learning With Er-
rors (RLWE) problem, the distinguishing characteristic of the second-generation cryptosys-
tems is that they all feature a much slower growth of the noise during the homomorphic
computations, and that they are efficient enough for many applications even without invok-
ing bootstrapping, instead operating in the leveled FHE mode, allowing a limited number
of operations before the noise gets out of hand.
Third Generation FHE was sparked off by the efforts of Craig Gentry, Amit Sahai, and Brent
Waters in 2013 [GSW13] who proposed a new technique for building FHE schemes that avoid
expensive relinearization steps in homomorphic multiplication. The notable schemes of this

1

generation are FHEW [DM14] TFHE [Chi+16]. The scheme we focus on in this thesis is
from [GSW13], the first Third Generation FHE scheme.
In 2016, Cheon, Kim, Kim, and Song (CKKS) proposed a scheme [Che+17] which includes an
efficient rescaling operation that scales down an encrypted message after a multiplication.
This avoids the expensive bootstrapping involved in earlier schemes. This is the current
generation of Homomorphic Encryption, called the Fourth Generation FHE.

1.3 Organization
In Section 2, we list out the notation we use. In Section 3, we introduce the mathematical
building blocks required to proceed with the thesis. In Section 4 we formally present the
cryptosystem given by Gentry, Sahai, and Waters [GSW13], and provide proofs of correctness
of the system. Using the proofs, we deduce a method for explicitly choosing parameters for
the system, and reformulate the system for better readability. In Section 5 we do some
investigational cryptanalysis of the system using data science, and conclude our findings.
Explicit implementation, and data scientific background are provided in Appendix 7.

1.4 Related Works
The data scientific techniques we employ are provided in detail in the article [KKP23]. My
(Aaruni Kaushik) contribution to [KKP23] was in actually implementing and optimizing
the TDA pipeline 7.1.3 designed by the other authors, generating the data for analysis, and
running all computations.

2

2 Notation
This section will list out explicitly all the notation we use

Π Cryptosystem

P Set of Plaintexts

C Set of Ciphertexts

E Encryption algorithm

D Decryption algorithm

D{0,1} Decryption algorithm for parity

Z Set of Integers

Zq Set of Integers modulo q

L Multiplicative depth of scheme

λ Parameter for security level

χ LWE distribution

m Size of the error vector drawn from χ

← Means we are drawing a sample observation from a distribution

⌊x⌋ Greatest integer function applied to x

⌈x⌉ Lowest integer function applied to x

⌊x⌉ x rounded off to the closest integer

LSB(x) Least Significant Bit of the binary representation of x

⟨⃗a, b⃗⟩ Scalar product between a⃗ and b⃗

3

3 Prerequisites
In this section we aim to address simple definitions and properties so that the next section
begins to make sense. We assume very little and try to eliminate the need for an external
reference to make sense of our work. While there are quite a few definitions, we mostly only
reiterate standard definitions which an initiated reader could ignore. The only non-standard
definitions are in Section 3.3, and are taken from [GSW13].

3.1 Cryptographic Background
Definition 3.1 (Cryptosystem):
A cryptosystem is a 5-tuple Π := (P, C, κ, E ,D), where

1. P is the set of Plaintexts. This is where all messages live.

2. C is the set of Cyphertexts. This is where all encryptions live.

3. κ is the bijective map between the set of Encryption Keys and the set of
Decryption Keys

4. E is the Encryption algorithm, which uses an encryption key e to encrypt a plaintext
to give a ciphertext.

Ee : P → C
p 7→ Ee(p)

5. D is the Decryption algorithm, which uses a decryption key d to decrypt a ciphertext
to return a plaintext. It is the inverse operation of E .

Dd : C → P
Ee(p) 7→ p

Definition 3.2 (Security Properties):
For a given cryptosystem Π we define the following security properties:

1. Π is said to be one way (OW) if it is infeasible for an attacker to decrypt an arbitrary
ciphertext.

2. Π is said to be indistinguishable (IND) if it is infeasible for an attacker to associate a
given ciphertext to one of several known plaintexts.

3. Π is said to be non-malleable (NM) if it is infeasible for an attacker to modify a given
ciphertext in a way such that the corresponding plain text is sensible in the given
language respectively context.

Remark 3.3 :
Loosely, a problem is infeasible if it takes too many resources to compute. For the purposes
of this thesis, we simplify this notion to mean that a problem is infeasible if there is no
solution with better time complexity than O(2n), that is, the best solution to the problem is
to simply try every possible answer until you find one that fits.

4

Definition 3.4 (Active Attack):
An active attack on a cryptosystem is one in which the attacker actively changes the com-
munication by, for example, creating, altering, replacing or blocking messages.

Definition 3.5 (Passive Attack):
A passive attack on a cryptosystem is one in which the attacker only eavesdrops plaintexts
and ciphertexts. The attacker cannot alter any messages they see.

Remark 3.6 :
We only outline passive attacks in this thesis.

Definition 3.7 (Attack Scenario):
One can choose one, or a combination, of the following kinds of attacks:

1. In a Cipehertext Only Attack (COA), the attacker receives only ciphertexts, for
example, a database of encrypted passwords.

2. In a Known Plaintext Attack (KPA), the attacker receives pairs of plaintexts and
corresponding ciphertexts.

3. In a Chosen Plaintext Attack (CPA), the attacker can choose arbitrary plaintexts
and is able to receive the corresponding ciphertexts.

4. In a Adaptive Chosen Ciphertext Attack (CCA), an attacker is able to adaptively
choose ciphertexts and to receive the corresponding plaintexts. The attacker is allowed
to alter the choice depending on what is received. So the attacker has access to the
decryption algorithm Dd and wants to get to know the decryption key d.

Example 3.8 (Known Plaintext Attack):
• The Caesar cipher is vulnerable to Known Plaintext Attack.

• The attack against the Enigma machine was (at least in part), a Known Plaintext
Attack. [Sin00]

Definition 3.9 (Security Model):
A security model is a security property together with an attack scenario.

Example 3.10 :
IND-CPA is a security model, where one would check the indistinguishability property of a
given cryptosystem Π with respect to a Chosen Plaintext Attack.
Let’s say Alice sends a secret message to Bob using a cryptosystem Π, and Eve wants to
read this message. In the CPA attack, Eve is allowed to encrypt as many messages as
she wants using the encryption algorithm E from Π. If Eve is then able to find a way to
meaningfully distinguish between the encryptions and find the decryption keys, then the
indistinguishability property of the cryptosystem is voided, and Eve has successfully carried
out an IND-CPA attack.
On the other hand, if the system is immune to this particular class of attacks, then the
system is said to be IND-CPA secure.

5

Remark 3.11 :
In an asymmetric cryptosystem, mounting the Chosen Plaintext Attack is trivial, as the
encryption parameters are published openly, and can be done on the attacker’s computer
without any limits. The success of this attack depends wholly on the security provided by the
system.

Remark 3.12 :
The attack used in this thesis is a Chosen Plaintext Attack.

Definition 3.13 (Homomorphic Cryptosystem):
A Homomorphic Cryptosystem is a cryptosystem Π along with one or more evaluation
functions f ′ : C → C such that, for some function f : P → P

f ′((E(a)), E(b), f) = f(a, b)

Types of homomorphic encryption are:

• Partially homomorphic encryption

• Somewhat homomorphic encryption

• Leveled fully homomorphic encryption

• Fully homomorphic encryption

Definition 3.14 (Partially homomorphic encryption):
Partially homomorphic encryption are schemes that support the evaluation of only one type
of operation, e.g., addition or multiplication.

Definition 3.15 (Somewhat homomorphic encryption):
Somewhat homomorphic encryption schemes can evaluate two types of operations, but only
for a subset of functions.

Definition 3.16 (Leveled fully homomorphic encryption):
Leveled fully homomorphic encryption supports the evaluation of arbitrary functions com-
posed of multiple types, but bounded (pre-determined) number of operations.

Definition 3.17 (Fully homomorphic encryption):
Fully homomorphic encryption allows the evaluation of arbitrary functions composed of
multiple types of operations of unbounded depth and is the strongest notion of homomorphic
encryption.

Remark 3.18 :
It is nice to have a homomorphic cryptosystem where f ′ is the “natural” map of f from P
to C. For example, if P = Zq and C = ZN×N

q , then we would like to obtain a scheme where
f is simple integer addition (modulo q), and f ′ is simply matrix addition (modulo q). The
system described in [GSW13] was the first homomorphic cryptosystem to provide this nicety.

Remark 3.19 :
By definition, Fully Homomorphic Cryptography Schemes are Malleable, and therefore, can
never have all three security properties defined in Definition 3.2.

6

Definition 3.20 (LWE Problem):
For security parameter λ, let n = n(λ) be an integer dimension, let q = q(λ) ≥ 2 be an
integer, and let χ = χ(λ) be a distribution over Zq, The LWEn,q,χ problem is to distinguish
the following two distributions:

• Uniform samples (a⃗i, bi)← Zn+1
q

• Samples (a⃗i, bi) ∈ Zn+1
q where:

a⃗i ← Zn
q uniformly

s⃗ ← Zn
q uniformly, ei ← χ, and set bi := ⟨a⃗i, s⃗⟩+ ei

The LWEn,q,χ assumption is that the LWEn,q,χ problem is infeasible.

3.2 Number Theoretic Background

Definition 3.21 (Lattice):
Let b1, . . . , bk ∈ Rn be R-linear independent. Then,

Λ := +Zbi

is called a lattice or, sometimes, a Z-lattice in Rn

Definition 3.22 (Shortest Vector Problem [Mic11]):
Given k linearly independent integer vectors B = [b1, . . . , bk] in n-dimensional Euclidean
space Rn, the Shortest Vector Problem (SVP) asks to find a nonzero linear combination
Bx =

∑k
i=1 bixi(with x ∈ Zk\{0}) such that the norm ||Bx|| is as small as possible.

SVP can be concisely defined as the problem of finding the shortest nonzero vector in the
lattice represented by B.
The SVP problem is NP-Hard

Definition 3.23 (GapSVPg [Mic11]):
Given a lattice basis B, values d, g, the decision problem to determine if

λ1(B) ≤ d or λ1(B) > g · d

is denoted the GapSVPg.
The GapSVPg problem is also NP-Hard.

3.3 Helpful Functions

In this section we define some helper operations we will use in our cryptosystem, as found
in [GSW13].

Definition 3.24 (BitDecomp):
For any vector a⃗ = (a1, a2, . . . , ak) of length k, and l the number of bits in the largest ai ∈ a⃗

BitDecomp(⃗a) = (a1,0, a1,1, . . . , a1,l−1, . . . , ak,0, . . . , ak,l−1)

where a1,0 is LSB(a1), and ak,l−1 is the lth bit in the binary representation of ak, and may
be 0.

7

Definition 3.25 (BitDecomp−1):
For any vector a⃗′ = (a1,0, a1,1, . . . , a1,l−1, . . . , ak,0, . . . , ak,l−1) of length N = k · l,

BitDecomp−1(a⃗′) = (
∑

2j · a1,j , . . . ,
∑

2j · ak,j)

Remark 3.26 :
We abuse our notation when we define BitDecomp−1, as it is not a true inverse of
BitDecomp. If one starts with a⃗ ∈ {0, 1}N , then these operations invert each other, but
BitDecomp−1(⃗a) is well-defined even when a⃗ ∈ Zq

N .

Definition 3.27 (Flatten):
For any vector a⃗′ of length N = k · l,

Flatten(a⃗′) = BitDecomp(BitDecomp−1(a⃗′))

Definition 3.28 (PowersOf2):
For any vector b⃗ = (b1, b2, . . . , bk),

PowersOf2(⃗b) = (20b1, 2
1b1, . . . , 2

l−1b1, . . . , 2
0bk, s

1bk, . . . , 2
l−1bk)

Remark 3.29 :
Technically, PowersOf2 also depends on l, but we skip writing it as a formal parameter of
the function as l is a fixed parameter for a given cryptosystem, and we only use PowersOf2
within the context of a cryptosystem.

Remark 3.30 :
We extend the above operations to matrices by applying them row wise to the matrix.

We now look at two useful properties of these newly defined functions.

Theorem 3.31 :
⟨BitDecomp(⃗a),PowersOf2(⃗b)⟩ = ⟨⃗a, b⃗⟩.

Proof.
From Definitions 3.24 and 3.28,

BitDecomp(⃗a) =(a1,0, a1,1, . . . , a1,l−1, . . . , ak,0, ak,1, . . . , ak,l−1) (1)

PowersOf2(⃗b) =(20b1, 2
1
b1, . . . , 2

l−1b1, . . . , 2
0bk, 2

1bk, . . . , 2
l−1bk) (2)

⟨(1), (2)⟩ = (a1,02
0b1 + a1,12

1b1 + · · ·+ a1,l−12
l−1b1 + · · ·+

ak,02
0bk + ak,12

1bk + · · ·+ ak,l−12
l−1bk)

= (b1 · (
∑

2ja1,j) + b2 · (
∑

2ja2,j) + · · ·+ bk · (
∑

2jak,j))

= (
∑

ai · bi) = ⟨⃗a, b⃗⟩

8

Remark 3.32 :
It is not obvious, but the previous proof depends on the value of l. In particular, l must be
high enough that each ai is decomposed into bits without losing any significant bits. We have
defined BitDecomp in a way to always keep this fact be true.

Theorem 3.33 :

⟨a⃗′,PowersOf2(⃗b)⟩ = ⟨BitDecomp−1(a⃗′), b⃗⟩ = ⟨Flatten(a⃗′),PowersOf2(⃗b)⟩

Proof.

⟨a⃗′,PowersOf2(⃗b)⟩ = ⟨BitDecomp−1(a⃗′), b⃗⟩:
By Definition 3.25,

BitDecomp−1(a⃗′) = (
∑

2ja1,j ,
∑

2ja2,j , . . . ,
∑

2jak,j) (3)

Hence, we obtain

⟨BitDecomp−1(a⃗′), b⃗⟩ = (
∑

2ja1,jb1 +
∑

2ja2,jb2 + · · ·+
∑

2jak,jbk)

= (a1,0 · 20b1 + a1,1 · 21b1 + · · ·+ ak,l−1 · 2l−1bk)

= ⟨a⃗′,PowersOf2(⃗b)⟩

⟨BitDecomp−1(a⃗′), b⃗⟩ = ⟨Flatten(a⃗′),PowersOf2(⃗b)⟩:
By Definition 3.27,

Flatten(a⃗′) = BitDecomp(BitDecomp−1(a⃗′))

Then, by Theorem 3.31,

⟨BitDecomp(BitDecomp−1(a⃗′)),PowersOf2(⃗b)⟩ = ⟨BitDecomp−1(a⃗′), b⃗⟩

Remark 3.34 :
The proof for Theorem 3.33 is quite simple intuitively. All we really are doing is moving
around the powers of 2. As BitDecomp−1 “generates” powers of 2, we can use it on the first
operand of the inner product when we remove PowersOf2 from second operand and preserve
the final answer.
Similarly, for the second part, as BitDecomp “removes” powers of 2, we can use it on the
first operand, and apply PowersOf2 on the second operand to keep the final value of the scalar
product the same.

Remark 3.35 :
Flatten() is a useful tool for us as it reduces coefficients of vectors to bits while preserving
the product of its input vector with PowersOf2(). In our cryptosystem, we use Theorem 3.33
to hide the plain text by flattening it, without losing our ability to recover the plaintext by
looking at its inner product with PowersOf2(secret key)

9

4 GSW LFHE

In this section, we formally introduce the cryptosystem. First, we reproduce it as described
by [GSW13]. We proceed by verifying that the system is correct, i.e., applying the decryption
algorithm after the encryption algorithm and checking if it really gives what we started out
with. Then we provide an explicit way of choosing paramaters, before finally reformulating
the cryptosystem for clarity, and present our version of the same system.

4.1 GSW Encryption Scheme

The crypto system as described in [GSW13] is as follows.

Setup(1λ, 1L):

Choose a modulus q of κ = κ(λ, L) bits, lattice dimension parameter n = n(λ, L), and er-
ror distribution χ = χ(λ, L) appropriately for LWE that achieves at least 2λ security against
known attacks. Also, choose parameter m = m(λ, L) = O(n log(q)) Let params = (n, q, χ,m).
Let l = ⌊log2(q)⌋+ 1, and N = (n+ 1) · l

SecretKeyGen(params):

Sample t⃗← Zq
n. Output sk = s⃗← (1,−t1,−t2, . . . ,−tn) ∈ Zn+1

q . Let v⃗ = PowersOf2(⃗(s))

PublicKeyGen(params, pk):

Generate a matrix B ← Zm×n
q uniformly and a vector e⃗← χm. Set b⃗ = B · t⃗+ e⃗. Set A to

be the (n+1)-column matrix consisting of b⃗ followed by the n columns of B. Set the public
key pk = A. (Remark: Observe that A · s⃗ = e⃗)

Epk(params, µ):

To encrypt a message µ ∈ Zq, sample a uniform matrix R ∈ {0, 1}N×m and output the
ciphertext C given below.

C = Flatten(µ · IN +BitDecomp(R ·A)) ∈ ZN×N
q

D{0,1}sk(params, C):

Observe that the first l coefficients of v⃗ are 1, 2, . . . , 2l−1. Among these coefficients, let
vi = 2i be in (q4 ,

q
2]. Let Ci be the ith row of C. Compute xi ← ⟨Ci, v⃗⟩.

Output µ′ = ⌊xi/vi⌉.

Dsk(params, C) (for q a power of 2):

Observe that q = 2l−1 and the first l − 1 coefficients of v⃗ are 1, 2, . . . , 2l−2, and therefore
if C · v⃗ = µ + small, then the first l − 1 coefficients of C · v⃗ are µ · g⃗ + small, where
g⃗ = (1, 2, . . . , 2l−2). Recover the LSB(µ) from µ · 2l−2 + small, then recover the next-least-
significant-bit from (µ− LSB(µ)) · 2l−3 + small, etc. (See [MP12] for general q case.)

10

Add(C1,C2,+):

To add ciphertexts C1, C2 ∈ ZN×N
q output Flatten(C1 + C2). Note that the addition of

messages is over the full base ring Zq.

Remark 4.1 :
The paper [GSW13] also defines homorphic multiplication functions MultConst(C,α) and
Mult(C1, C2), and homomorphic NAND function NAND(C1, C2). However, we choose not
to focus on those. While MultConst(C,α) is provided in implementation 7.2, we completely
ignore Mult(C1, C2) as the massive growth in noise would force us to implement bootstrap-
ping. The homomorphic NAND is of no particular interest to us, but is quite useful when
trying to build real circuits which implement this scheme.

4.2 Correctness of Decryption
Theorem 4.2 :
The decryption function for a small message space is correct, i.e.,

D{0,1}sk(params, Epk(params, µ)) = µ, for µ ∈ {0, 1}

Proof.

Encryption Let us begin by encrypting a plaintext µ ∈ {0, 1}
Recall that by definition, the ciphertext is given by

C = Epk(params, µ) = Flatten(µ · IN +BitDecomp(R ·A)),

where R ∈ {0, 1}N×m and A ∈ Zm×n+1
q

Let R · A = [(RA)i j], and set D := BitDecomp(R · A) ∈ {0, 1}N×N . We use a triply
indexed (RA)i j k to mean the (k + 1)th bit of (RA)i j

Then,

D =


(RA)1 1 0 (RA)1 1 1 · · · (RA)1 1 l−1 (RA)1 2 0 (RA)1 2 1 · · · (RA)1 n+1 l−1

(RA)2 1 0 (RA)2 1 1 · · · (RA)2 1 l−1 (RA)2 2 0 (RA)2 2 1 · · · (RA)2 n+1 l−1

· · ·
(RA)N 1 0 (RA)N 1 1 · · · (RA)N 1 l−1 (RA)N 2 0 (RA)N 2 1 · · · (RA)N n+1 l−1


BF := µ · IN +D

=


µ+ (RA)1 1 0 (RA)1 1 1 · · · · · · (RA)1 n+1 l−1

(RA)2 1 0 µ+ (RA)2 1 1 · · · · · · (RA)2 n+1 l−1

· · ·
(RA)N 1 0 (RA)N 1 1 · · · · · · µ+ (RA)N n+1 l−1


C = Flatten(BF)

=


(µ+ (RA)1 1 0)

′ ((RA)1 1 1)
′ · · · · · · ((RA)1 n+1 l−1)

′

((RA)2 1 0)
′ (µ+ (RA)2 1 1)

′ · · · · · · ((RA)2 n+1 l−1)
′

· · ·
((RA)N 1 0)

′ ((RA)N 1 1)
′ · · · · · · (µ+ (RA)N n+1 l−1)

′



11

Decryption

Let vi = 2i ∈ (q4 ,
q
2]; v ∈ ZN

q

Let Ci be the ith row of C, i < l − 1

Then, the ith row of Ci is

((RA)i 1 i−1 + µ)′ ∈ {0, 1}

Compute xi ← ⟨Ci, v⃗⟩ :

Ci =
[
(RA)

′
i 1 0 (RA)

′
i 1 1 · · · ((RA)i 1 i−1 + µ)′ · · · (RA)

′
i n+1 l−1

]
v =

[
20 21 · · · 2i · · · −tn2l−1

]
xi = ⟨Ci, v⃗⟩

= 2i((RA)i 1 i−1 + µ)′ + 20(RA)
′
i 1 0 + 21(RA)

′
i 1 1 + · · · − tn · 2l−1 · (RA)

′
i n+1 l−1

As v⃗ = PowersOf2(s⃗k), and Flatten() preserves the product with PowersOf2() (Theo-
rem 3.33), we have

xi = 2i((RA)i 1 i−1 + µ) + 20(RA)i 1 0 + 21(RA)i 1 1 + · · · − tn · 2l−1 · (RA)i n+1 l−1

= 2iµ+ (RA)i 1 − t1(RA)i2 − · · · − tn(RA)i n+1

Then,

⌊xi/vi⌉ = ⌊xi/2
i⌉ = ⌊µ+

error
2i
⌉ = µ

Theorem 4.3 :
The general case decryption is correct, i.e.,

Dsk(params, Epk(params, µ)) = µ

Proof.

Encryption

As before, we run the encryption function on a µ ∈ Zq. We get

C = Flatten(BF)

=


(µ+ (RA)1 1 0)

′ ((RA)1 1 1)
′ · · · · · · ((RA)1 n+1 l−1)

′

((RA)2 1 0)
′ (µ+ (RA)2 1 1)

′ · · · · · · ((RA)2 n+1 l−1)
′

· · ·
((RA)N 1 0)

′ ((RA)N 1 1)
′ · · · · · · (µ+ (RA)N n+1 l−1)

′



12

Decryption

v⃗ = PowersOf2(s⃗k)

= (20, 21, . . . , 2l−1,−t120,−t121, . . . ,−t12l−1, . . . ,−tn2l−1) ∈ ZN
q

< C, v⃗ > =



20µ+ (RA)1 1 − (t1(RA)1 2 + t2(RA)1 3 + · · ·+ tn(RA)1 n+1)
21µ+ (RA)2 1 − (t1(RA)2 2 + t2(RA)2 3 + · · ·+ tn(RA)2 n+1)

· · ·
2l−1µ+ (RA)l−1 1 − (t1(RA)l−1 2 + t2(RA)l−1 3 + · · ·+ tn(RA)l−1 n+1)

· · ·
N − l + 1 lines of noise

. . .



=



20µ+ small
21µ+ small

. . .
2l−1µ+ small

. . .
Noise
. . .


We reconstruct our µ bit by bit from ⟨C, v⃗⟩ as follows:
1st Bit:

Take µ′
1 to be the l − 1st element of ⟨C, v⃗⟩. That is,

µ′
1 = 2l−2µ+ small = 2l−2µ1 + small

Then, µ1 = ⌊ µ′
1

2l−2 ⌉
2nd Bit:

Take µ′
2 to be the l − 2nd element of ⟨C, v⃗⟩. That is

µ′
2 = 2l−3µ+ small = 2l−3(2µ2 + µ1) + small

Then, µ2 = ⌊µ
′
2−2l−3µ1

2l−2 ⌉
We continue this process till we recover µl−1, and then we assemble our plaintext

µ =

l∑
i=0

2i · µi+1

4.3 Choice of Parameters
The proof for Theorem 4.2 also gives us some information to help with choosing our param-
eters for encryption.
As ⌊xi/vi⌉ = ⌊µ+ error

2i ⌉ = µ, xi/vi can be at most 1
2 away from the value of µ. So, error

2i ≤
1
2

=⇒ error ≤ 2i−1

Recall from Section 4.1 that 2i ∈ (q4 ,
q
2] =⇒ 2i−1 ∈ (q8 ,

q
4]. So, we get an upper bound for

the estimate, namely,
error ≤ q

8

13

Our error term depends on the value of the sampled t⃗, the random matrix B, and e⃗← χm.
However, only e⃗ is a choice we make (by choosing an appropriate χ), as the other two
samples are uniformly random. Therefore, we choose χ such that

∑
ei∀ei ∈ e⃗ keeps under

the obtained upper bound.
As q must always be a power of 2, and it can be exponential in n, it is a straightforward
choice to make.

q = 2n

As m > 2 · n · log2(q), we choose m just greater than its bound.

m = 2 · n · log2(q) + 1

Armed with this knowledge, and some trial and error with the LWE-Estimator tool [APS15],
we arrive at the final parameters.
For 129 bits of security, a set of secure parameters for this scheme are calculated by [APS15]
to be:

n = 768

λ = 1

q = 222

m = 2 · n · ⌊log2(q)⌋+ 1

χ = Ndiscrete(µ = q
23+λ·m , σ2 = 3.0)

So, on a reasonably fast computer, it is theorised to take 1012 × age of the universe to
break this scheme via the best known attack. That is, the best attack should be of the
complexity at least O(n10.33).

Remark 4.4 :
[APS15] cautions the reader against using it as a reference for the state of the art in assessing
the cost of solving LWE or making sense of the LWE estimator.

4.4 Reformulated GSW13
With the help of things we learnt above, we are now ready to reformulate the GSW13
cryptosystem.

Remark 4.5 :
Care must be taken that q is large enough that the choice of λ make sense. That is, q

23+λm
should be a large enough positive number so that the variance supplied to the Discrete Gaus-
sian does not return negative integer samples. The python implementation 7.2 will inten-
tionally crash if the Discrete Gaussian ever samples a negative number.

Setup(n,λ):

Choose q according to the desired security level and set l = log2(q) + 1 = n+ 1
Choose χ = Ndiscrete(µ = q

23+λm
, σ2), where σ is chosen according to the desired security

level.
Set m = 2× n× l, and N = (n+ 1)× l
Return parameters

params = (q, n,m, l,N, χ)

14

SecretKeyGen(params):

Sample t← Zn
q uniformly.

Return secret key
s⃗k = (1,−t1, . . . ,−tn) ∈ Zn+1

q

PublicKeyGen (params, sk):

Sample a matrix B ← Zm×N
q and an error vector e⃗← χm

Set b⃗ = B · t⃗+ e⃗ and A = (⃗b, B) ∈ Zm×n+1
q .

Return public key
p⃗k = A

Cpk(params, µ):

Sample R← 0, 1N×m uniformly.
Return ciphertext

C = Flatten(µ · IN +BitDecomp(R ·A)) ∈ {0, 1}N×m

D{0,1}sk(params, C):

Set v⃗ = PowersOf2 s⃗k. Choose an i such that 2i ∈ (q4 ,
q
2]. Then set x = ⟨Ci, v⟩, where Ci is

the ith row of C when counting from 0.
Return plaintext

µ = ⌊ x
vi
⌉ ∈ {0, 1}

where vi is the ith element of v⃗ when counting from 0.

Dsk(params, C):

Set v⃗ = PowersOf2 sk.
Let the first l − 1 coefficients of ⟨C · v⃗⟩ be (cl−1, cl−2, · · · , c1)
Then recover µ1 = LSB(µ) = ⌊ c1

2l−2 ⌉.
Then recover the next significant bit µ2 = ⌊ c2−2l−3

2l−2 ⌉, and so on.
Finally, return the plaintext as

µ = 20µ1 + 21µ2 + · · ·+ 2l−2µl−1

Add(C1,C2,+) :

For ciphertexts C1 and C2, output

C = Flatten(C1 + C2)

MultConst(C,α, ·) :

Let C be a ciphertext, and α ∈ Zq. Set Mα := Flatten(α · In). Then, output

C = Flatten(Mα · C)

Remark 4.6 :
MultConst is not a “true” homomorphic evaluation function as defined in Definition 3.13 as
one of its operands is an unencrypted number α. But it behaves in the expected manner,
that is, D(MultConst(C,α, ·)) = D(C) · α.

15

4.5 Examples
Let us now demonstrate the algorithm D with a small example. Note that the parameters
chosen below guarantee no security, but results in small enough terms that an example may
be computed by hand. Refer to Section 4.3 for choosing parameters securely.

Example 4.7 (Compute Dsk(params, C)):
Say in our case, n = 4, =⇒ q = 24 = 16
Set v⃗ := PowersOf2(s⃗k)
Lets say the first 4 elements of ⟨C, v⃗⟩ are [15, 13, 9, 2]
Set c4 := 15, c3 := 13, c2 := 9, and c1 := 2.
Let us now calculate the LSB(µ) from c1

c1 = 24−1 · µ+ small = 8 · µ+ small

µ1 = ⌊ c1
24−1

⌉ = ⌊2
8
⌉ = 0

We now recover the remaining bits of µ

c2 = 24−2 · (2 · µ2 + µ1) + small = 8µ2 + µ1 + small

µ2 = ⌊c2 − 4µ1

24−1
⌉ = ⌊9− 0

8
⌉ = 1

c3 = 24−3 · (4µ3 + 2µ2 + µ1) + small = 8µ3 + 4µ2 + 2µ1 + small

µ3 = ⌊c3 − 4µ2 − 2µ1

24−1
⌉ = ⌊13− 4− 0

8
⌉ = 1

c4 = 24−4 · (8µ4 + 4µ3 + 2µ2 + µ1) + small = 8µ4 + 4µ3 + 2µ2 + µ1 + small

µ4 = ⌊c4 − 4µ3 − 2µ2 − µ1

8
⌉ = ⌊15− 4− 2− 0

8
⌉ = 1

Finally, we assemble the bits to get our plaintext

µ = µ1 + 2µ2 + 4µ3 + 8µ4 = 0 + 2 + 4 + 8 = 14

16

5 Cryptanalysis
Homomorphic cryptosystems are by definition malleable. But also, their “homomorphiness”
gives the entire ciphertext space additional structure. We theorise that this additional
structure is enough to undermine the indistinguishability property (Definition 3.2), and it
is not infeasible to leverage this with a Chosen Plaintext Attack (CPA) (Definition 3.7).

5.1 Basic Idea
In the system under consideration, all our ciphertexts are big square matrices. Imagine, if
one could, to squash all square matrices of parameter n onto a single linear spectrum. Then,
we think all encryptions of a plaintext (given some constant parameters for the system)
form a distinct pile on this spectrum. This way, for a paramter n, we have 2n clusters in a
spectrum of 2N

2

width (as before, N = (n+1)× l), as we have only 2n plaintexts to encrypt,
but our ciphertext space is {0, 1}N×N , which has 2N

2

members. In particular, we theorise
there must be a way to find these clusters such that they partition the cipher space cleanly.

Figure 1: The “Matrix Spectrum” : The colored parts indicate piles of distinct encryption,
and the white parts indicate unused part of the space.

5.2 Data Science Facts About Our Data
DecisionTrees and RandomForests

Decision Trees (Definition 7.3) and Random Forests (Definition 7.6) are data classifiers which
can ingest some data to train a certain model, and then predict which class an unknown data
point belong to. This property makes these tools ideal candidates for training on known
encryptions obtained in a CPA model, and then try to classify unknown ciphertexts.
For data generated by us, we have consistently been able to tune parameters to gain an
accuracy of about 90% with different system parameters, and keypairs, reaching even perfect
accuracy in some case.

Our Setup

In our experiments, for each set of parameters, we generate 200 encryptions of each bit, then
split 70% of them into a training set and the remaining 30% into a testing set, transform
our sets according to a TDA pipeline (Section 7.1.2), and finally train the model and score
its accuracy against the testing set. Care was taken to ensure that the training data and
the testing data do not overlap. That is, ciphertexts included in the testing set are never
seen by the model during training (except if the encryption algorithm generated duplicates,
which has an overwhelming probability to not happen.)

17

5.3 Our Results

We ran our analysis over a range of parameters selected in accordance to Section 4.3. We
present the accuracy and time results of our attack below.

5.3.1 Accuracy

We include the exact analysis pipeline we used in Appendix 7.3. Both the RandomForest and
DecisionTree classifiers work similarly, with slightly different performance. In the following
table, we have noted the accuracy of whichever performed better in the respective case.
While both the classifiers have parameters one could tune for improving the score for each
instance of our cryptosystem, the following table shows the accuracy of the unchanging
globally "optimal" parameters we have arrived at through experimentation.

n q m χ Accuracy

64 218 2305 NDiscrete(µ = 7.11, σ2 = 1) 79%
128 218 4609 NDiscrete(µ = 3.55, σ2 = 1) 98%
512 222 22529 NDiscrete(µ = 11.64, σ2 = 1) 86%
768 222 33793 NDiscrete(µ = 7.75, σ2 = 1) 76%

With these accuracy results in hand, we only have to worry about the feasibility of our
attack.

5.3.2 Time Complexity

Recall, that no cryptosystem is completely unbreakable, as every scheme can be broken
by the brute force attack, that is, simply trying every possible answer until we arrive at
something which works. But it is not feasible to mount such an attack against a secure
scheme, as it may take far too long to compute than is actually possible. A typically secure
scheme has 128 bits of security, that is, it requires 2128 computations to complete the brute
force attack. Assuming a reasonably fast computer can do around 3 billion computations
per second, that will still take 1029 seconds, that is, 1011 × the age of the universe to
complete. As long as we can show that our attack still performs better than this worst-case
time of O(2n), it is better than brute force, and is not considered infeasible.

n q m χ Security Time Guarantee Time Taken

64 218 2305 NDiscrete(µ = 7.11, σ2 = 1) < 5 Minutes 02:00:00
128 218 4609 NDiscrete(µ = 3.55, σ2 = 1) 5 Minutes 04:15:46
512 222 22529 NDiscrete(µ = 11.64, σ2 = 1) 105 Years 230:31:38
768 222 33793 NDiscrete(µ = 7.75, σ2 = 1) 1018 Years 274:29:00

Below, we plot both the wall time of our attack on a single core of a relatively modern
CPU, against the input parameter n. We refrain from multithreading our analysis as it cur-
rently results in a significant blowup in memory usage, and does not provide a proportional
speedup. This restricts attacks against secure parameters. From the figure 5.3.2, it is clear
that our approach (of complexity O(n2.18)) is much better than the worst case of O(2n).

18

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

·106

n

T
im

e
T
ak

en

n2.2

Wall Time

Figure 2: Time Complexity Graph

5.4 Concluding Remarks

As things appear right now, we have found a flaw in a scheme which, in theory, is supposed
to be secure, depending on certain assumptions which are widely accepted to be correct.
We use novel and previously unconsidered methods of attack to achieve this. Instead of
classical cryptanalysis where one would try to sniff out enough leaked information out of a
clever combination of ciphertexts to recover the secret key, we turn to data science for help.
We completely bypass the recovery of a secret key, and use inherent structure present in
this homomorphic system to find patterns in the ciphertexts, which a classical attack would
perhaps never see.
We also tried this same strategy of attack against the base Learning With Errors instance
on which the scheme is based, to no success.

6 Further Work

It would be interesting to investigate why this scheme is susceptible to this type of attack.
As our attack is ineffective against the base LWE, and the security of this scheme depends

19

on a proof from [Reg09], it should be possible to check whether the proof is improperly
adapted in its use.
It may also be interesting to see whether other homomorphic schemes are susceptible to this
class of attacks. As our attack is based in Topological Data Analysis, it may be particularly
interesting to investigate this attack against Fast Fully Homomorphic Encryption over the
Torus [Chi+16].
One could also look into improving the efficiency of our attack, especially in leveraging
a multiprocessing attack with the same idea. At the moment, we only use the n_jobs
parameter of the functions provided by the various data science libraries. Right now, this
provides only ∼ 30% decrease in time when using 32 processors as opposed to just 1.

20

7 Appendix

7.1 Data Scientific Background
In this section we provide some background on the data scientific concepts used in the
thesis. Note that we do not aim for full mathematical precision in this section, but just
enough information to add context to our work in the main body of this thesis. Much of
the content in this section is sourced from [Was03].

7.1.1 Data Mining Dictionary

Statisticians and computer scientists often use different language for the same thing. Here
is a dictionary that the reader may want to return to throughout this section.

Statistics Computer Science Meaning

Covariates Features The Xi’s
Classifier Hypothesis Map h : X → Y

Data Training sample (X1, Y1), . . . , (Xn, Yn)
Estimate Learning Finding a good classifier

Classification Supervised learning Predicting a discrete Y from X

Definition 7.1 (Classification):
The problem of predicting a discrete random variable Y from another random variable X is
called classification. Classification is an instance of supervised learning.

Definition 7.2 (Classification Rule):
Consider independent and identically distributed data (X1, Y1), . . . , (Xn, Yn), where

Xi = (Xi1, . . . , Xid) ∈ X ∈ Rd

is a d-dimensional vector and Yi takes values in some finite set Y. A classification rule is a
function h : X → Y. When we observe a new X, we predict Y to be h(X).

Definition 7.3 (Decision Tree Classifier):
Trees are classification methods that partition the covariate space X into disjoint pieces and
then classify the observations according to which partition element they fall in. As the name
implies, the classifier can be represented as a tree. The bottom nodes of the tree are called
the leaves.

21

Example 7.4 (Decision Tree):
For illustration, suppose there are two covariates, X1 = age and X2 = blood pressure.
Figure 7.1.1 shows a classification tree using these variables. The tree is used in the following
way. If a subject has Age ≥ 50 then we classify him as Y = 1. If a subject has Age < 50
then we check his blood pressure. If systolic blood pressure < 100 then we classify him as
Y = 1, otherwise we classify him as Y = 0.

Figure 3: A simple classification tree [Was03]

Definition 7.5 (Ensemble Methods):
Ensemble methods are supervised learning methods which use multiple learning algorithms
to obtain better predictive performance than could be obtained from any of the constituent
learning algorithms alone.

Definition 7.6 (Random Forest Classifier):
A Random Forest is an ensemble learning method for classification that operates by con-
structing a multitude of decision trees at training time. The output of the random forest is
the class selected by most trees.

7.1.2 Topological Data Analysis

Topological Data Analysis (TDA) is an approach to the analysis of datasets using techniques
from the field of algebraic topology. TDA is a data science tool that looks at the shape of
data. It consists of a range of different approaches with an underlying theme of extracting
topological invariants from original data. In our case, we extract topological features (7.1.1)
from looking at our encrypted bits as pointclouds.

22

7.1.3 The Pipeline

TDA isn’t a single technique. Rather, it is a collection of approaches with the common
theme of extracting shapes from data. A generic TDA pipeline can be visualised as below.

Figure 4: A generic TDA pipeline visualised [Tal22]

7.2 Implementation
We have implemented the scheme as described in Section 4.4 using python. Our imple-
mentation is provided below. It, along with the code in 7.3, is also made available at
https://codeberg.org/aaruni96/master-thesis-code .

1 # importing stuff
2 import numpy as np
3 import math
4

5 # initialise the RNG system
6 rng = np.random.default_rng ()
7

8 # define a dictionary for when parameters need to change
9

10

11 def floorceiling(a):
12 ’’’
13 Returns the closest integer to input
14 ’’’
15 # as is standard , exact halfway point is rounded to the nearest even
16 # so, 0.5 is rounded *DOWN* to 0, and -0.5 is rounded *UP* to 0.
17 return np.round(a).astype(int)
18

19

20 def bitdecomp(a, q):
21 ’’’
22 Returns bit decomposition of input (l least significant digits)
23 ’’’
24 bda = []
25 l = math.floor(math.log(q, 2)) + 1
26 for i in range(0, len(a)):
27 ai = int(a[i])
28 assert ai >= 0, f’ai must always be positive , or overflow. ai = {ai}’
29 bitstring = format(ai, f’0{l}b’)[::-1] # reversed bitdecomp of a[i]
30 for j in range(0, l):

23

https://codeberg.org/aaruni96/master-thesis-code

31 bda.append(int(bitstring[j]))
32 return bda
33

34

35 def mbitdecomp(a, q):
36 ’’’
37 Bit decomposition method , but for matrices
38 ’’’
39 bda = []
40 for i in range(np.shape(a)[0]):
41 bda.append(bitdecomp(a[i], q))
42 return bda
43

44

45 def abitdecomp(a, q):
46 ’’’
47 Inverse bitdecomposition method
48 ’’’
49 abda = []
50 j = 0
51 t = 0
52 l = math.floor(math.log(q, 2)) + 1
53 for i in range(0, len(a)):
54 t += a[i] * (2**j)
55 j = (j + 1) % l
56 if (j == 0):
57 abda.append(t % q)
58 t = 0
59 return abda
60

61

62 def flatten(a, q):
63 ’’’
64 Computes a flattened vector of the input.
65 The flattened vector is restricted to entries of only {0,1},
66 but has the same product as input vector with Powersof2(b)
67 ’’’
68 return bitdecomp(abitdecomp(a, q), q)
69

70

71 def mflatten(a, q):
72 ’’’
73 Flatten but for matrices
74 ’’’
75 a = np.array(a)
76 a = a.astype(int)
77 f = []
78 for i in range(0, np.shape(a)[0]):
79 f.append(flatten(a[i], q))
80 return f
81

82

83 def powersof2(a, q):
84 ’’’
85 Returns a vector composed of each input vector entry
86 multiplied with upto l powers of 2
87 ’’’
88 r = []
89 l = math.floor(math.log(q, 2)) + 1
90 for i in range(0, len(a)):
91 p = 1
92 for j in range(0, l):

24

93 r.append ((a[i] * p) % q)
94 p = p * 2
95 return r
96

97

98 def setup(n):
99 ’’’

100 Setup function
101 ’’’
102 # at least 2**3 = 8 for encryption/decryption
103 # at least 2**4 = 16 for homomorphic operations
104 # something higher for reasonable security
105 q = 2**22
106 m = 2 * n * math.floor(math.log(q, 2)) + 1
107 params = {’q’: q, ’n’: n, ’m’: m}
108 return params
109

110

111 def secretkeygen(params):
112 ’’’
113 Function to generate secret key
114 ’’’
115 sk = [1]
116 for i in range(0, params[’n’]):
117 sk.append(-1 * rng.integers(0, params[’q’], endpoint=False))
118 return sk
119

120

121 def LWE(m, q):
122 ’’’
123 Draws from ZZq such that the sum of all choices is
124 less than or equal to q/16
125 ’’’
126 stdev = 1.0
127 e = rng.normal(q / 16 / m, stdev , m)
128 print(f’N_d(mu={q/16/m}, stddev ={stdev}’)
129 for n in e:
130 assert n >= 0, f’n must be positive , reduce your variance .\ nstddev ={

stdev}, q={q}, , m={m}, mu={q/16/m}\nsum(e) = {sum(e)}’
131 e = np.array([k % q for k in e.astype(int)])
132 return e
133

134

135 def publickeygen(params , sk):
136 ’’’
137 Function to generate public key matrix
138 ’’’
139 B = rng.integers(
140 0, params[’q’],
141 (params[’m’], params[’n’]),
142 endpoint=False
143)
144 t = sk[1:-1]
145 t.append(sk[-1])
146 for i in range(0, len(t)):
147 t[i] = -t[i]
148 e = LWE(params[’m’], params[’q’])
149 b = np.matmul(B, t) + e
150 A = []
151 for i in range(0, len(B)):
152 A.append ([])
153 A[i]. append(b[i] % params[’q’])

25

154 for j in range(0, len(B[i])):
155 A[i]. append(B[i][j])
156 A = np.rint(A)
157 A = A.astype(int)
158 return A
159

160

161 def enc(params , pk, mu, N):
162 ’’’
163 Encryption function
164 ’’’
165 R = rng.integers(0, 1, (N, params[’m’]), endpoint=True)
166 I_n = np.identity(N)
167 A = pk
168 C = mflatten(mu * I_n + mbitdecomp(np.matmul(R, A), params[’q’]), params[’

q’])
169 return C
170

171

172 def dec(params , sk, C):
173 ’’’
174 Decryption function , given plaintext mu is from a small space (say {0,1})
175 ’’’
176 q = params[’q’]
177 v = powersof2(sk, q)
178 i = int(math.log(q, 2) - 1)
179 x = np.inner(C[i], v) % q
180 return int(floorceiling(x / v[i]))
181

182

183 def mpdec(params , sk , C):
184 ’’’
185 Decryption function for a general mu, given q is a power of 2
186 ’’’
187 l = math.floor(math.log(params[’q’], 2)) + 1
188 v = powersof2(sk, params[’q’])
189 C = np.array(C)
190 v = np.array(v).astype(int)
191 Cv = (np.inner(C, v)).astype(int)
192 #print(Cv%params[’q ’])
193 retval = 0
194 bits = np.zeros(l - 1).astype(int)
195 for i in range(0, l - 1):
196 #4 bits of 16
197 numerator = Cv[l - 2 - i] % params[’q’]
198 #starting with mu_1
199 myrealexpr = numerator
200 myexpr = f’(c_{i + 1}’
201 #print(" calculation for bit ", i+1)
202 #print ("================================")
203 #print(" numerator is ",numerator)
204 #print("bits so far are", bits)
205 for j in range(0, i):
206 myexpr += f’ - {int (2**(l-2) /2**(j+1))}mu_{i - j}’
207 myrealexpr -= int (2**(l - 2) / 2**(j + 1)) * bits[i - j - 1] %

params[’q’]
208 myexpr += f’)/{2**(l - 2)}’
209 #print(myrealexpr)
210 #print((myrealexpr%q) / 2**(l-2))
211 myrealexpr = floorceiling ((myrealexpr % params[’q’]) / 2**(l - 2))
212 #print(myexpr)
213 #print(myrealexpr)

26

214 #print ("================================")
215 bits[i] = myrealexpr
216 retval = retval + 2**i * bits[i]
217 retval = retval % params[’q’]
218 return retval
219

220

221 def hadd(C1, C2, q):
222 ’’’
223 Homomorphic addition function
224 ’’’
225 C1 = np.array(C1)
226 C2 = np.array(C2)
227 C = mflatten(C1 + C2, q)
228 return C
229

230

231 def multconst(C, alpha , q):
232 return flatten(np.matmul(flatten(alpha * np.identity(np.shape(C)[0]), q),

C), q)

7.3 Statistical Analysis Code
For the sake of completeness, we include the statistical analysis we ran, implemented in
python.

1 # lets import things
2 # raw imports
3 import os
4 import math
5

6 # aliased imports
7 import pandas as pd
8 import numpy as np
9

10 # gtda imports
11 from gtda.homology import CubicalPersistence
12 from gtda.diagrams import Amplitude , Scaler , PersistenceEntropy
13 from gtda.images import RadialFiltration , HeightFiltration
14

15 # sklearn imports
16 from sklearn.ensemble import RandomForestClassifier
17 from sklearn.pipeline import make_pipeline , make_union
18 from sklearn.model_selection import train_test_split
19 from sklearn.tree import DecisionTreeClassifier
20

21 # set switches for which things to compute
22 do_rf = True
23 do_ttsplit = True
24 # using multiple jobs uses much more memory ,
25 # and spends a lot of CPU time just shovelling data around
26 dj = 1
27

28 # parameter
29 num = 768
30

31 if (do_ttsplit):
32

33 # read some data
34 print("Reading data")
35 path = ’./’

27

36 allfiles = os.listdir(path)
37 allpaths = []
38 enc = []
39 dgm = []
40 for f in allfiles:
41 if f.startswith(f’enc_{num}_’):
42 allpaths.append(os.path.join(f’{path}{f}’))
43

44 print("Making data frames")
45 for f in allpaths:
46 print(f"Reading {f}...")
47 limbo = np.loadtxt(f, dtype=np.bool_)
48 print(
49 f’Size of {f} in memory is ’
50 f’{limbo.nbytes / 1024 /1024 /1024} GiB’
51)
52 enc.append(pd.DataFrame(np.reshape(
53 limbo , (limbo.shape [0] // limbo.shape [1], limbo.shape

[1]**2)
54)))
55 del limbo # desperate attempt to free up some memory
56 print("Data frames done!")
57

58 else:
59 print(
60 "do_ttsplit is false!"
61 "Skipping reading data , and will load it from file in a bit!"
62)
63

64 # random forest and DT classifier
65 if (do_rf):
66 # add target to PD
67 print("Doing RF stuff!")
68 if (do_ttsplit):
69 for i in [0, 1]:
70 limbo = int(allpaths[i].split(’_’)[2])
71 enc[i] = enc[i]. assign(target=np.full(enc[i].shape [0], limbo))
72 del limbo # desperate attempt to free up some memory
73

74 # combine 0s and 1s into a single DF
75 data = pd.concat ([enc[0], enc[1]], ignore_index=True)
76 feature_names = [c for c in data.columns if c not in ["target"]]
77 X, y = np.array(data[feature_names]), np.array(data["target"])
78

79 # setup training
80 X = X.reshape ((
81 -1,
82 int(math.sqrt(enc [0]. shape [1])),
83 int(math.sqrt(enc [0]. shape [1]))
84))
85

86 train_size , test_size = int (0.70*X.shape [0]), int (0.30*X.shape [0]) #
70:30 split , as methodology mandates

87

88 # we never use enc after this
89 del enc # desperate attempt to save some memory
90 X_train , X_test , y_train , y_test = train_test_split(X, y,
91 test_size=

test_size ,
92 train_size=

train_size ,
93 random_state =666,

28

94 stratify=y
95)
96 del X, y # desperate attempt to save memory
97

98 # save to disk
99 np.save(f’{num}_y_test ’, y_test)

100 np.save(f’{num}_y_train ’, y_train)
101

102 # tda pipeline
103 print("Starting with the TDA pipeline ...")
104

105 steps = [
106 ("filtration", RadialFiltration(center=np.array ([20, 6]))),
107 ("diagram", CubicalPersistence ()),
108 ("rescaling", Scaler ()),
109 ("amplitude", Amplitude(
110 metric="heat",
111 metric_params ={’sigma’: 0.15, ’n_bins ’: 60}
112))
113]
114

115 print("Done enumerating steps!")
116

117 direction_list = [[-1, 1]]
118 center_list = [[13, 13]]
119

120 # Creating a list of all filtration transformer , we will be applying
121 filtration_list = (
122 [
123 HeightFiltration(direction=np.array(direction), n_jobs=dj)
124 for direction in direction_list
125] + [
126 RadialFiltration(center=np.array(center), n_jobs=dj)
127 for center in center_list
128]
129)
130 print("Done creating filteration list!")
131

132 # Creating the diagram generation pipeline
133 diagram_steps = [
134 [
135 filtration ,
136 CubicalPersistence(n_jobs=dj),
137 Scaler(n_jobs=dj),
138]
139 for filtration in filtration_list
140]
141 print("Done setting up diagram steps!")
142

143 # Listing all metrics we want to use to extract diagram amplitudes
144 metric_list = [
145 {
146 "metric": "bottleneck",
147 "metric_params": {}
148 },
149 {
150 "metric": "wasserstein",
151 "metric_params": {"p": 1}
152 },
153 {
154 "metric": "wasserstein",
155 "metric_params": {"p": 2}

29

156 },
157 {
158 "metric": "landscape",
159 "metric_params": {"p": 1, "n_layers": 1, "n_bins": 100}
160 },
161 {
162 "metric": "landscape",
163 "metric_params": {"p": 1, "n_layers": 2, "n_bins": 100}
164 },
165 {
166 "metric": "landscape",
167 "metric_params": {"p": 2, "n_layers": 1, "n_bins": 100}
168 },
169 {
170 "metric": "landscape",
171 "metric_params": {"p": 2, "n_layers": 2, "n_bins": 100}
172 },
173 {
174 "metric": "betti",
175 "metric_params": {"p": 1, "n_bins": 100}
176 },
177 {
178 "metric": "betti",
179 "metric_params": {"p": 2, "n_bins": 100}
180 },
181 {
182 "metric": "heat",
183 "metric_params": {"p": 1, "sigma": 1.6, "n_bins": 100}
184 },
185 {
186 "metric": "heat",
187 "metric_params": {"p": 1, "sigma": 3.2, "n_bins": 100}
188 },
189 {
190 "metric": "heat",
191 "metric_params": {"p": 2, "sigma": 1.6, "n_bins": 100}
192 },
193 {
194 "metric": "heat",
195 "metric_params": {"p": 2, "sigma": 3.2, "n_bins": 100}
196 },
197]
198

199 print("Done enumerating metrics!")
200

201 feature_union = make_union(
202 *[PersistenceEntropy(nan_fill_value =-1)] + [
203 Amplitude (**metric , n_jobs=dj) for metric in metric_list
204]
205)
206

207 print("Made feature_union!")
208

209 tda_union = make_union(
210 *[make_pipeline (* diagram_step , feature_union)
211 for diagram_step in diagram_steps],
212 n_jobs=dj
213)
214 del feature_union , metric_list , diagram_steps
215

216 print("Done tda_union")
217

30

218 print(" Will begin tda fit next!")
219 print(’Transforming training data’)
220

221 X_train_tda = tda_union.fit_transform(
222 np.reshape(
223 X_train [0], (1, X_train [0]. shape[0], X_train [0]. shape [1])
224)
225)
226 X_train [0] = 0
227 for i in range(1, len(X_train)):
228 print(f’{i+1} of {len(X_train)}’)
229 X_train_tda = np.append(
230 X_train_tda ,
231 tda_union.fit_transform(
232 np.reshape(
233 X_train[i],
234 (1, X_train[i]. shape[0], X_train[i].shape [1])
235)
236),
237 axis=0
238)
239 X_train[i] = 0
240 np.save(f’{num}_train_data ’, X_train_tda)
241 print("Done fit_transform!")
242 print("Transforming testing data")
243 X_test_tda = tda_union.transform(np.reshape(
244 X_test [0],
245 (1, X_test [0]. shape[0], X_test [0]. shape [1])
246))
247 X_test [0] = 0
248

249 for i in range(1, len(X_test)):
250 print(f’{i+1} of {len(X_test)}’)
251 X_test_tda = np.append(
252 X_test_tda ,
253 tda_union.transform(np.reshape(
254 X_test[i],
255 (1, X_test[i].shape[0], X_test[i].shape [1])
256)),
257 axis=0
258)
259 X_test[i] = 0
260 np.save(f’{num}_test_data ’, X_test_tda)
261 print("Done transform!")
262 print("TDA pipeline done!")
263

264 else:
265 print("Loading test -train data pair from disk ...")
266 X_train_tda = np.load(f’{num}_train_data.npy’)
267 X_test_tda = np.load(f’{num}_test_data.npy’)
268 y_train = np.load(f’{num}_y_train.npy’)
269 y_test = np.load(f’{num}_y_test.npy’)
270 print("Done loading data!")
271

272 # random forest
273 # grid search for parameters
274 print("Fitting for random forest")
275 maxrfsc = 0
276 for md in range(2, 10):
277 print(f’{md}’)
278 for ne in range(2, 50):
279 for msp in range(2, 50):

31

280 rf = RandomForestClassifier(
281 max_depth=md ,
282 n_estimators=ne ,
283 min_samples_split=msp ,
284 random_state =666
285)
286 rf.fit(X_train_tda , y_train)
287 rfscore = rf.score(X_test_tda , y_test)
288 if rfscore > maxrfsc:
289 maxrfsc = rfscore
290 rfretup = (maxrfsc , md, ne, msp)
291 if (rfscore > 0.8):
292 print(rfscore , md, ne, msp)
293

294 print("Random forest done!")
295

296 # decision tree
297 # grid search for parameters
298 print("Fitting for DT....")
299 maxdtsc = 0
300 for md in range(2, 100):
301 for msp in range(2, 50):
302 rf = DecisionTreeClassifier(
303 max_depth=md ,
304 min_samples_split=msp ,
305 random_state =666
306)
307 rf.fit(X_train_tda , y_train)
308 dtscore = rf.score(X_test_tda , y_test)
309 if (dtscore > maxdtsc):
310 maxdtsc = dtscore
311 dtretup = (dtscore , md, msp)
312 if (dtscore > 0.8):
313 print(dtscore , md, msp)
314 print("DecisionTree done!")
315

316 print(f’random forest score is {rfretup}’)
317

318 print(f’decision tree score is {dtretup}’)

32

References
[RAD78] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. “On Data Banks

and Privacy Homomorphisms”. In: Massachusetts Institute of Technology (1978).
url: http://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-
OnDataBanksAndPrivacyHomomorphisms.pdf.

[Sin00] Simon Singh. The Code Book : The Science of Secrecy from Ancient Egypt to
Quantum Cryptography. Knopf Doubleday Publishing Group, 2000.

[Was03] Larry Wasserman. All of Statistics: A Concise Course in Statistical Inference
(Springer Texts in Statistics). Dec. 2003. isbn: 0387402721.

[Gen09] Craig Gentry. “Fully Homomorphic Encryption Using Ideal Lattices”. In: Pro-
ceedings of the Forty-First Annual ACM Symposium on Theory of Comput-
ing. STOC ’09. Bethesda, MD, USA: Association for Computing Machinery,
2009, pp. 169–178. isbn: 9781605585062. doi: 10.1145/1536414.1536440. url:
https://doi.org/10.1145/1536414.1536440.

[Reg09] Oded Regev. “On lattices, learning with errors, random linear codes, and cryp-
tography”. In: Journal of the ACM (JACM) 56.6 (2009), pp. 1–40.

[Mic11] Daniele Micciancio. “Shortest Vector Problem”. In: Encyclopedia of Cryptography
and Security. Ed. by Henk C. A. van Tilborg and Sushil Jajodia. Boston, MA:
Springer US, 2011, pp. 1196–1197. isbn: 978-1-4419-5906-5. doi: 10.1007/978-
1-4419-5906-5_434. url: https://doi.org/10.1007/978-1-4419-5906-
5_434.

[Ped+11] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[MP12] Daniele Micciancio and Chris Peikert. “Trapdoors for Lattices: Simpler, Tighter,
Faster, Smaller”. In: Advances in Cryptology – EUROCRYPT 2012. Ed. by David
Pointcheval and Thomas Johansson. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2012, pp. 700–718. isbn: 978-3-642-29011-4.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. “Homomorphic Encryption from
Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-
Based”. In: (2013). url: https://eprint.iacr.org/2013/340.

[DM14] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping Homomorphic En-
cryption in less than a second. Cryptology ePrint Archive, Paper 2014/816.
https://eprint.iacr.org/2014/816. 2014. url: https://eprint.iacr.
org/2014/816.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of Learning with Errors. Cryptology ePrint Archive, Paper 2015/046. https:
//eprint.iacr.org/2015/046. 2015. url: https://eprint.iacr.org/2015/
046.

[Chi+16] Ilaria Chillotti et al. TFHE: Fast Fully Homomorphic Encryption Library. 2016.
url: https://tfhe.github.io/tfhe/.

[Che+17] Jung Hee Cheon et al. “Homomorphic Encryption for Arithmetic of Approximate
Numbers”. In: Advances in Cryptology – ASIACRYPT 2017. Ed. by Tsuyoshi
Takagi and Thomas Peyrin. Cham: Springer International Publishing, 2017,
pp. 409–437. isbn: 978-3-319-70694-8.

33

http://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf
http://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-1-4419-5906-5_434
https://doi.org/10.1007/978-1-4419-5906-5_434
https://doi.org/10.1007/978-1-4419-5906-5_434
https://doi.org/10.1007/978-1-4419-5906-5_434
https://eprint.iacr.org/2013/340
https://eprint.iacr.org/2014/816
https://eprint.iacr.org/2014/816
https://eprint.iacr.org/2014/816
https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2015/046
https://tfhe.github.io/tfhe/

[TSB18] Christopher Tralie, Nathaniel Saul, and Rann Bar-On. “Ripser.py: A Lean Per-
sistent Homology Library for Python”. In: The Journal of Open Source Software
3.29 (Sept. 2018). doi: 10.21105/joss.00925. url: https://doi.org/10.
21105/joss.00925.

[Tau+20] Guillaume Tauzin et al. giotto-tda: A Topological Data Analysis Toolkit for Ma-
chine Learning and Data Exploration. 2020. arXiv: 2004.02551 [cs.LG].

[Tal22] Shawhin Talebi. “Topological Data Analysis (TDA) A less mathematical intro-
duction”. In: (2022). url: https://towardsdatascience.com/topological-
data-analysis-tda-b7f9b770c951.

[KKP23] Jayati Kaushik, Aaruni Kaushik, and Upasana Parashar. Using Topological Data
Analysis to Classify Encrypted Bits. 2023. doi: 10.48550/ARXIV.2301.07393.
url: https://arxiv.org/abs/2301.07393.

34

https://doi.org/10.21105/joss.00925
https://doi.org/10.21105/joss.00925
https://doi.org/10.21105/joss.00925
https://arxiv.org/abs/2004.02551
https://towardsdatascience.com/topological-data-analysis-tda-b7f9b770c951
https://towardsdatascience.com/topological-data-analysis-tda-b7f9b770c951
https://doi.org/10.48550/ARXIV.2301.07393
https://arxiv.org/abs/2301.07393

	Abstract
	Acknowledgements
	Introduction
	Fully Homomorphic Encryption (FHE)
	Brief History
	Organization
	Related Works

	Notation
	Prerequisites
	Cryptographic Background
	Number Theoretic Background
	Helpful Functions

	GSW LFHE
	GSW Encryption Scheme
	Correctness of Decryption
	Choice of Parameters
	Reformulated GSW13
	Examples

	Cryptanalysis
	Basic Idea
	Data Science Facts About Our Data
	Our Results
	Accuracy
	Time Complexity

	Concluding Remarks

	Further Work
	Appendix
	Data Scientific Background
	Data Mining Dictionary
	Topological Data Analysis
	The Pipeline

	Implementation
	Statistical Analysis Code

	References

